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Abstract: - In this paper, a multimodal firefly algorithm named the CFA (Coulomb Firefly Algorithm) has been 
presented based on the Coulomb’s law. The algorithm is able to find more than one optimum solution in the 
problem search space without requiring any additional parameter. In this proposed method, less bright fireflies 
would be attracted to fireflies which are not only brighter, but according to the Coulomb’s law pose the highest 
gravity. Approaching the end of iteration, fireflies' motion steps are reduced which finally results in a more 
accurate result. With limited number of iterations, groups of fireflies gather around global and local optimal 
points. After the final iteration, the firefly which has the highest fitness value, would be survived and the rest 
would be omitted. Experiments and comparisons on the CFA algorithm show that the proposed method has 
successfully reacted in solving multimodal optimization problems. 
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1 Introduction 
Optimization is finding an optimum solution from a 
set of available options with the purpose of 
optimizing criteria for the problem in a limited time. 
The main challenge with single solution 
optimization algorithms, however, is that they are 
only able to find one optimum solution from a set of 
available options while most real-world problems 
have more than one optimum solution [1]. Hence, 
multimodal optimization algorithms which are 
among the novel inventions of evolutionary 
algorithms, have been designed to find a set of 
possible solutions from available options. Unlike 
unimodal optimization algorithms which try to 
avoid local optimal points, multimodal optimization 
algorithms recognize these points as a solution. 
Although normally the algorithms have not been 
basically designed to merely solve these problems, 
several algorithms have recently tried to solve these 
problems by modifying existing unimodal 
optimization algorithms. The majority of these 
algorithms are based on particle swarm optimization 
algorithms [1-6] and genetic algorithms [7-10]. The 
firefly optimization algorithm has been used 
successfully to optimize different kinds of problems, 
but all of them have been within the span of 
unimodal optimization problems. In this paper, the 
Coulomb’s law has been applied to the firefly 

optimization algorithm in order to turn it into a 
multimodal algorithm. 
 
 
2 Related Work 
2.1. EPSO 
EPSO algorithm [3] was introduced by J. Barbara 
and Carlos A. C. in 2009. In this method, the 
selection of global optimum mechanism, in PSO 
algorithm, was changed using Coulomb's law. Then, 
the particles that are to be selected as the global 
optimum can be separately calculated for each 
particle. In fact, particles may move towards 
different particles as the global optima. In other 
words, the global optima for every particle could 
vary from one particle to another. Hence, particles 
not only do not surround the global optima, but they 
also surround their local optima. It is evident that a 
particle with a more desirable cost function is 
surrounded by more particles. It is this mechanism's 
property that particles tend to move towards a point 
that has both an appropriate cost function value and 
an appropriate distance from the particle. 
 
2.2. FERPSO 
FERPSO [2] is a well-known algorithm that has 
been proposed for solving multimodal optimization 
problems which was introduced by Xiaodong Li in 
2007. In terms of nature, this algorithm could be 
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viewed as: more birds will gather where there is 
more food.  In fact, if they find a good resource near 
themselves, they will not use farther resources. In 
FERPSO, the particles that are to be selected as 
global optimal point are selected for each particle 
regarding the Euclidian distance between particles. 
In essence, the overall structure of FERPSO and 
EPSO are highly similar, and they both have the 
same level of complexity. 
 
2.3. LPSO 
B. Y. Qu et al have combined a local searching 
technique with some existing multimodal PSO 
optimization algorithms that have used niching [2, 
11, 12] method trying to solve such problems. In 
this method, the personal best for particles are 
improved significantly by using a local searching 
method. In fact, the personal best is improved by 
generating a random point between the particle and 
the nearest point, that is, if the newer point is more 
desirable than the current personal best, the new 
point will replace the former, otherwise, the original 
point stays intact. 
 
2.4. SNPSO 
J.Zhang et al. [13] proposed a modified algorithm 
called the sequential niching particle swarm 
optimization (SNPSO). This algorithm divides the 
whole population into several sup-populations 
which can be located around optimal solutions in 
multimodal problems. They use space convergence 
rate (SCR), in which each sub-population detects 
global and local optimal solutions until the end of 
iteration. 
 
2.5. SPSO 
Xiaodong li. [11] proposed an improved PSO 
algorithm called the (SPSO). In this method, the 
idea of species is used to specify each species’ best 
value of neighborhood. The algorithm divides the 
whole population into several populations called 
species with regard to their similarity. Each species 
gather around a particle called species seed. 
 
 
3 Firefly Algorithm 
 
3.1. The Behavior of Fireflies in Nature 
There are almost two thousand known species of 
firefly in nature, most of which emit flashes of light 
with a certain rhythm in order to attract a mating 
partner or bait. In addition to these reasons, fireflies 

can protect themselves against the attackers using 
the flashes which can also attract the opposite sexes. 
The distance between the fireflies and the 
environment, where the light is emitted, is somehow 
effective on the intensity of light received by 
fireflies. As the light intensity obeys the inverse 
square law at a particular distance r (I ∝ 1/r2), and 
because light is absorbed by air, most fireflies can 
just be visible to a limited distance. 
 
3.2. Firefly Algorithm 
The firefly algorithm is one of the novel 
optimization algorithms based on swarm 
intelligence which was first introduced by X.Yang 
in 2008 [14]. It was inspired by the natural behavior 
of fireflies. The firefly algorithm randomly 
distributes a number of artificial fireflies in the 
search space at the beginning. All of the fireflies are 
unisexual and thus regardless of gender, each firefly 
can be attracted by any other firefly. Each firefly 
produces a light whose intensity depends on the 
optimality of its position and is proportional to its 
fitness value. The next step is comparing constantly 
the intensity of the light of each firefly with that of 
other fireflies and less bright fireflies moves 
towards brighter ones. Evidently, depending on the 
distance, fireflies receive lights with varying 
intensities; however, the brightest firefly moves 
randomly in search of space to increase its chance of 
finding the global optimum solution. Movement of 
the less bright firefly towards the brighter one is 
expressed through equation (1). 

(1)  
2

0
1
2

ijr

i i j ix x e x x rand


 
  

     
 

 

Where 𝛽0 is the maximum coefficient of attraction 
between ith and jth fireflies, α is the coefficient of 
random displacement vector,  γ is the light 
absorption coefficient for the environment, and  𝑟𝑖𝑗  
is the Euclidean distance between two fireflies. Each 
firefly is compared to all others and if its fitness 
value is less than that of another one, it will be 
attracted according to equation (1). This trend 
continues to the last algorithm iteration when finally 
the optimum solution is obtained as the final 
solution. Main steps of the firefly algorithm can be 
expressed in the form of the pseudo-code briefed in 
Algorithm 1 (FA). 
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4 Multimodal Optimization 
Constraints such as physical, temporal and 
economic limitations can prevent achievement of 
actual results; however, having knowledge of 
multimodal optimization solutions is very useful in 
engineering fields. In such cases, if multiple local 
and global solutions are available, the optimum 
system performance is obtained by switching 
between solutions. Since there are several solutions 
to many real-world problems, multimodal 
optimization algorithms are useful for solving these 
problems. Not only are these algorithms able to 
locate multiple optima in a single run, but they also 
preserve their population diversity. The reason why 
classic optimization techniques are not used to find 
multiple solutions shows their unreliability in 
finding more than one solution in multiple runs [15]. 
Evolutionary algorithms including Genetic 
Algorithms (GAs), Differential Evolution (DE), 
Particle Swarm Optimization (PSO), and Evolution 
Strategy (ES) are kinds of algorithms which has 
been tried to solve multimodal optimization 
problems. Referred algorithms [7, 10, 15-23] are 
among algorithms designed to the aforementioned 
criteria.  
 
 
5 Multimodal Firefly Algorithm 
Studies on multimodal optimization have mostly 
focused on the PSO and genetic algorithms. In this 
paper, like other meta-heuristic algorithms which 
have used unimodal algorithms for solving 
multimodal optimization problems, some changes 
are made on FA algorithm without the need for any 

additional parameter, and it has been utilized to 
solve multimodal optimization problems. In the 
proposed algorithm, the Coulomb’s law in equation 
(2) has been used to calculate the electrostatic 
interaction between two fireflies. This technique 
was successfully used by J. Barrera and A. Coello in 
[3] to obtain a multimodal PSO algorithm. They 
have used this method to calculate forces between 
two particles which has also been used in the 
present paper to calculate the attraction between two 
fireflies. 

 , 2
0

.1 .
4π

i j

j i

Q Q
F

r
  (2) 

In this equation, 1

4πƐ0
 is the proportionality constant 

(Coulomb constant); Qi and Qj denote the magnitude 
of two charged particles, and r is the distance 
between two charges. According to this formula, 
force magnitude is proportional to magnitude of 
charges but it obeys inverse square law for distance. 
Hence, the attraction between two fireflies is 
calculated through the following equation. 
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F

p p

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(3) 

In this equation, α is equal to 1 and 𝑓(𝑝𝑖) is the 
fitness value for the firefly which will be attracted to 
one of the present fireflies. 𝑓(𝑝𝑗) is the vector of the 
fitness value of other fireflies to which the ith firefly 
is being compared. Finally, the destination firefly is 
obtained by using equation (4). 
 

Algorithm 1  Pseudo-code for FA main steps 
Objective function f(x), x = (x1, ..., xd)T 
Generate initial population of fireflies xi (i = 1, 2, ..., n) 
Light intensity Ii at xi is determined by f(xi) 
Define light absorption coefficient γ 
1: while (t <MaxGeneration) 
2:     for i = 1 : n all n fireflies 
3:            for j = 1 : i all n fireflies 
4:               if (Ij > Ii) 
5:                      Move firefly i towards j in d-dimension; 
6:                  end if 
7:                  Attractiveness varies with distance r via exp[−γr] 
8:                 Evaluate new solutions and update light intensity 
9:            end for j 
10:      end for i 
11:     Rank the fireflies and find the current best 
12: end while 
Postprocess results and visualization 
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   ,argmax
i i jF

Fmax F  (4) 
Calculating the above equation yields to the 
maximum value of 𝐹(𝑖,𝑗).Finally, the index of the jth 
firefly, with the highest value of F, is calculated and 
equation (5) is obtained by changing equation (1). 
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 

 
(5) 

As a result, the ith firefly is attracted to the firefly 
which has the highest value of F. Therefore, 
destination fireflies are not selected just based on 
the value of fitness value but from calculating the 
electrostatic interaction between other fireflies. This 
method prevents the attraction of other fireflies by 
the best firefly. Instead, fireflies are attracted by 
fireflies which besides having sufficient fitness 
value, must be at a close distance since distance is 
an effective parameter in their attraction. In each 
iteration in this case, each firefly compares its 
electrostatic interaction with others’ and then moves 
toward the firefly which has the highest electrostatic 
interaction. As it was mentioned before, α is the 
coefficient of random displacement with a value 
considered to be [0.1- 1] at the beginning. This 
makes the firefly’s movements to be random to 
some extent and to search for new sources; 
however, this value of α results in a less precise 
solution at the end of iteration. To prevent it, the 

coefficient of random movement is reduced in each 
iteration so as to reduce the randomness of the 
movement of the firefly toward the destination. 
Moreover, the value of γ is increased in each 
iteration so that fireflies take smaller steps at the end 
of the iteration. These two actions take place using 
equations (6) and (7). 

Iterationα  α 1
MaxGeneration 2

 
   

 
 

(6) 

 

Iterationγ  γ
MaxGeneration 5

 


 (7) 
Main steps of CFA can be summarized into the 
pseudo-code shown in Algorithm 2.  
 
 
6 Experimental result 
6.1. Test Functions 
The experiments have been performed on 
benchmark functions common in multimodal 
optimization. Specifications of these algorithms are 
presented in Table (1).  
6.2. Configurations 
All algorithms were implemented in Matlab 2013 
and were run in a computer equipped with an Intel 
Core(TM) i7-3632QM 2.2 GH processor and 8 
gigabytes of RAM.  

 

Algorithm 2  Pseudo-code for CFA main steps 
Objective function f(x), x = (x1, ..., xd)T 
Generate initial population of fireflies xi (i = 1, 2, ..., n) 
Light intensity Ii at xi is determined by f(xi) 
Define light absorption coefficient γ 
1: while (t <MaxGeneration) 
2:     γ= γ +t / (MaxGeneration*5); 
3:          α = α * (1-t / )MaxGeneration*2); 
4:           for i = 1 : n all n fireflies 
5:                         for j = 1 : i all n fireflies 
6:                                        if (Ij > Ii) 
7:                                               push(F,( Ii * Ij)/norm(x(i)-x(j))^2); */ in d-dimension  
8:                                       end if 
9:                         end for j 
10:                      Move firefly i towards jmax⁡(f) in d-dimension;⁡ 
11:                       Attractiveness varies with distance r via exp[−γr] 
12:                      Evaluate new solutions and update light intensity 
13:          end for i 
14: end while 
Postprocess results and visualization 
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6.3. Performance measures 
To assess the performance of aforementioned 
algorithms in section (6.4), the following 7 criteria 
are considered and measured 50 runs. 
1. Success Rates (SR): The percentage of 

performances in which all the optimum points 
have been found successfully. 
To calculate success rate, a user specified 
parameter, called the Level of Accuracy (LOA), 
is considered. This parameter is usually between 
(0,1] and is used to measure the difference 
between found solutions and the real optimum 
points in functions, so that if the difference 
between found solution and the real solution is 
less than the amount of LOA, then the found 
solution is counted as a successful solution [12].  

2.  Average Number Of Optima Found (ANOF): 
The average of optimum points found 
considering LOA for 50 runs 

3. Global Average Number of Optima Found: The 
average of  global optima found considering 
LOA for 50 runs 

4. Average Function Evaluation is the average 
number of fitness function calling for 50 runs [1]. 

5. Success Performance (SP): This parameter is 
computable when the amount of SR is not zero 
[24]. SP is calculated from equation (8) : 

      Avarage NumberOf Function Evaluation ANOF
SP

SR
  (8)

. 
Based on the fact that algorithms with less 
ANOF and higher SR amount can be considered 
as a better one, it can be concluded that less SP 
amount is more acceptable. 

6. Maximum Peak Ratio (MPR): The quality of 
optima is tested without considering the 
population distribution, and the performance 
metric, which is called the maximum peak ratio 
statistic (MPR), is adopted. The MPR is defined 
as follows: 

1

1

1

1

C

ii

q

ii

f
CMPR

F
q









 (9) 

c: The number of found optimum point in the 
solution 
q: The number of real optimum points in the 
solution 
𝑓𝑖: The quantity of fitness function obtained in 
the final population 
𝐹𝑗: The quantity of real fitness value in objective 
function 

7. Precision :  the ratio of found optimum points to 
the number of real optimum points 

Table 1 Test Function 

 Test function Range Peaks 
Global/Local 

1 
   2 2

1 2 1 2

1
1 2

1 cos 2π  cos 2π 2021, 20 ( 20.exp 0.2
2

x x e

f x x x x e

 
                     

 
 
  
 

  

       
−5 < 𝑥1 < 5 
−5 < 𝑥2 < 5 

1/1 

2         2 2 2 2
1 2 1 1 2 2, 100 20 10cos 2 10cos 2  f x x x x x x        −5.12 < 𝑥1 < 5.12 

−5.12 < 𝑥2 < 5.12 
1/1 

3      
5 5

1 2 1 2
1 1

, 220 cos( 1 ). cos( 1 ).
i i

f x x i i x i i i x i
 

        −5.12 < 𝑥1 < 5.12 
−5.12 < 𝑥2 < 5.12 

4/201 

4    
4

2 2 2 21
1 2 1 1 1 2 2 2, 20 4 2.1 4 4

3
x

f x x x x x x x x
  

          
  

 −1.9 < 𝑥1 < 1.9 
−1.1 < 𝑥2 < 1.1 

2/6 

5      
2 22 2

1 2 1 2 1 2, 2500 ( 11  7 )f x x x x x x        
−6 < 𝑥1 < 6 
−6 < 𝑥2 < 6 

4/4 

6    6
1 5 5f x sin x   0 < 𝑥1 < 1 5/5 

7 
 

 
 

2
1

6
1

0.12 2  0.8
5  5

x
log

f x e sin x

 
 
 
 


 

    
0 < 𝑥1 < 1 1/5 

f1 = Ackley, f2 = Rastrigin,  f3 = Shubert, f4 = Six-hump camel back, f5 = Himmelblau, f6 = Equal maxima, f7 = Decreasing 
maxima 
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Precision  c
q

  (10) 
6.4.  Test and comparison results 
The results of the experiments are shown in the 
tables 2-4 which have the accuracies of 10-1, 10-2 
and 10-3 respectively.  First columns of all three 
tables represent test functions; second columns are 
equivalent of implemented algorithms and the other 
columns are as written on top of each column. The 
best performance was reported in boldface. As it can 
be seen from the results, with the increase of the 
level of accuracy, the proposed algorithm has a 
better performance compared to FER-PSO [2], 
EPSO [3] and LS-FER-PSO [1] algorithms. It is 
shown in the tables that the presented algorithm and 
LS-FER-PSO algorithm have better performance 
compared to other algorithms. Comparing LS-FER-
PSO algorithm and presented algorithm, it is shown 
that sometimes one performance is better than the 
other and vice versa. However it should be 
mentioned that the ratio of average function 
evaluation of LS-FER-PSO algorithm is 1.67 times 
higher than that of the presented algorithm. The 
performance of this algorithm proved its usefulness 
in solving optimization problems. 
Fig. 1. shows the search space of f4. Fig. 2 also 
indicates the position of fireflies during the running 
of the proposed algorithm with 60 fireflies and 60 
iterations using the f4 function. Fig. 2. A-D shows 
the position of particles in the 1st, 10th, 20th and 30th 
iterations. In fact, 4 out of the 6 available points 
were successfully found in 1800 function 
evaluation. However all optimum points can be 
found by increasing the number of fireflies. As it 
can be clearly observed in Fig. 2, by getting close to 
the end of the iterations, fireflies around optimum 
solutions become gradually more and more 
concentrated. Since the firefly algorithm was 
designed for maximum optimization problems, the 
average value of cost functions of fireflies increased 
in each iteration Fig. 3. Moreover, as seen in Fig. 4, 
as the concentration of fireflies around optima (i.e. 
around each other) increased, the standard deviation 
of cost functions decreased. The reason was that the 
more the process of the algorithm got closer to the 
end of the iteration, the more the fireflies and their 
cost functions got closer to form neighborhoods.  
 
 

7 Conclusion 
This paper proposed CFA multimodal firefly 
algorithm based on the Coulomb’s law. This 

algorithm was successful in solving multimodal 
optimization problems. Results of experiments 
indicated that this unimodal optimization algorithm 
was successfully turned into a multimodal 
optimization algorithm through modifications. Two 
of the advantages of this algorithm are quickly 
yielding optimal results and not requiring additional 
parameter for being turned into a multimodal 
algorithm. According to the results, this algorithm 
can be considered as a reliable multimodal 
optimization algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Fig. 1.  search landscape of f4 
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Table2 The results of the experiments - accuracy: 10-1 

Function Algorithm Success 
Rate 

Average 
Optima 
Found 

Global Average 
Optima Found 

Mean Peak 
Ration Precision Success 

Performance 

Average 
Function 

Evaluation 

Func-1 

CFA 0 94.3 1 1.013023 0.945670 Inf 122000 
FER-PSO 0 37.38 1 0.94486 0.635588 Inf 102000 

EPSO 0 58.18 1 0.981776 0.664516 Inf 102000 
LS-FER-PSO 0.08 108.68 1 0.649761 0.908604 Inf 204000 

Func-2 

CFA 0 97.4 1 1.03153 0.944675 Inf 122000 
FER-PSO 0 58.9 0.98 1.235763 0.663146 Inf 102000 

EPSO 0 66.38 1 0.996027 0.766224 Inf 102000 
LS-FER-PSO 0.52 110.3 1 0.992886 0.995518 927272.7 204000 

Func-3  

CFA 0 147.34 5.14 1.027689 0.962784 Inf 170800 
FER-PSO 0 119.62 3.74 1.093445 0.805226 Inf 142800 

EPSO 0 62.18 3.02 1.040867 0.911363 Inf 142800 
LS-FER-PSO 0 197.12 4.2 0.190057 0.959919 Inf 285600 

Func-4 

CFA 0.14 4.56 2 1.091253 0.984000 87142.86 12200 
FER-PSO 0.02 4.2 2 1.135589 0.960333 510000 5100 

EPSO 0.12 4.7 2 1.022293 0.768690 42500 5100 
LS-FER-PSO 0.98 5.98 2 0.788084 0.976000 1020000 20400 

Func-5 

CFA 1 4 4 0.888415 0.456564 12200 12200 
FER-PSO 0.02 1.92 1.92 1.265238 0.03479 510000 5100 

EPSO 0.04 2.34 2.34 0.859798 0.037773 255000 5100 
LS-FER-PSO 1 4 4 2.205311 0.466675 20400 20400 

Func-6 

CFA 0.42 4.14 4.14 1.09713 0.855333 14523.80 6100 
FER-PSO 1 5 5 1.126117 0.648757 5100 5100 

EPSO 0 1 1 1 1 Inf 5100 
LS-FER-PSO 1 5 5 1.173182 0.868849 10200 10200 

Func-7 

CFA 0.12 3.14 1 0.990534 1 50833.33 6100 
FER-PSO 0.94 4.94 1 1.263032 0.812786 5425.532 5100 

EPSO 0 1 1 1.058738 1 Inf 5100 
LS-FER-PSO 1 5 1 1.144458 0.889643 10200 10200 

Table3 The results of the experiments - accuracy: 10-2 

Function Algorithm Success 
Rate 

Average 
Optima 
Found 

Global Average 
Optima Found 

Mean Peak 
Ration Precision Success 

Performance 

Average 
Function 

Evaluation 

Func-1 

CFA 0 53.8 1 1.020978 0.621089 Inf 122000 
FER-PSO 0 6.38 0.64 0.630055 0.117527 Inf 102000 

EPSO 0 20.88 0.94 1.026456 0.248781 Inf 102000 
LS-FER-PSO 0 43.14 1 1.109575 0.616820 Inf 204000 

Func-2 

CFA 0 57.88 1 1.054625 0.562889 Inf 122000 
FER-PSO 0 7.64 0.24 1.245746 0.091978 Inf 102000 

EPSO 0 21.52 0.78 1.055243 0.247988 Inf 102000 
LS-FER-PSO 0 114.34 1 1.000549 0.953799 Inf 204000 

Func-3  

CFA 0 85.08 5 1.057686 0.627016 Inf 170800 
FER-PSO 0 10.88 0.68 0.92454 0.072021 Inf 142800 

EPSO 0 38.32 2.7 1.072754 0.580346 Inf 142800 
LS-FER-PSO 0 84.04 4 1.060134 0.603456 Inf 285600 

Func-4 

CFA 0.06 4.46 2 0.951791 0.931333 203333.3 12200 
FER-PSO 0 3.88 2 0.916055 0.890000 Inf 10200 

EPSO 0 3.44 1.76 1.038658 0.552857 Inf 10200 
LS-FER-PSO 0 4.02 2 1.173043 0.898333 Inf 20400 

Func-5 

CFA 0 4 4 0.926575 0.408128 12200 12200 
FER-PSO 0 0.46 0.46 0.846641 0.008104 Inf 10200 

EPSO 0 0.58 0.58 0.861226 0.018275 Inf 10200 
LS-FER-PSO 1 4 4 1.513459 0.404559 20400 20400 

Func-6 

CFA 0.02 3.02 3.02 0.866844 0.575548 305000 6100 
FER-PSO 1 5 5 0.995434 0.636006 5100 5100 

EPSO 0 1 1 1 1 Inf 5100 
LS-FER-PSO 1 5 5 1.159774 0.87873 10200 10200 

Func-7 

CFA 1 2.96 1 0.980653 0.796000 Inf 6100 
FER-PSO 1 5 1 0.824626 0.777659 5100 5100 

EPSO 0 1 1 1.058738 1 Inf 5100 
LS-FER-PSO 1 5 1 1.090589 0.92869 10200 10200 
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Table4 The results of the experiments - accuracy: 10-3 

Function Algorithm Success 
Rate 

Average 
Optima 
Found 

Global Average 
Optima Found 

Mean Peak 
Ration Precision Success 

Performance 

Average 
Function 

Evaluation 

Func-1 

CFA 0 20.24 0.86 1.069871 0.228672 Inf 122000 
FER-PSO 0 0.78 0.22 1.437689 0.014452 Inf 102000 

EPSO 0 8.06 0.5 1.103679 0.092075 Inf 102000 
LS-FER-PSO 0 13.22 1 1.123158 0.189530 Inf 204000 

Func-2 

CFA 0 18.1 0.62 1.030118 0.175755 Inf 122000 
FER-PSO 0 0.78 0 1.212728 0.009763 Inf 102000 

EPSO 0 8.44 0.42 0.986824 0.097171 Inf 102000 
LS-FER-PSO 0 55.42 1 0.992886 0.461895 Inf 204000 

Func-3  

CFA 0 36.1 4.08 1.011276 0.266552 Inf 170800 
FER-PSO 0 0.7 0.04 0.977142 0.004798 Inf 142800 

EPSO 0 16.04 1.08 1.03949 0.235603 Inf 142800 
LS-FER-PSO 0 24.14 4 1.039162 0.170459 Inf 285600 

Func-4 

CFA 0 3.84 1.88 0.930002 0.845333 Inf 12200 
FER-PSO 0 2.08 2 0.927387 0.470333 Inf 10200 

EPSO 0 1.28 0.78 0.785126 0.202500 Inf 10200 
LS-FER-PSO 0 3.14 2 1.182125 0.692333 Inf 20400 

Func-5 

CFA 0.9 3.88 3.88 0.798721 0.412415 13555.56 12200 
FER-PSO 0 0.24 0.24 1.702931 0.004307 Inf 10200 

EPSO 0 0.1 0.1 0.782353 0.001551 Inf 10200 
LS-FER-PSO 1 4 4 1.054611 0.170459 20400 20400 

Func-6 

CFA 0.06 2.76 2.76 1.29713 0.519389 101666.7 6100 
FER-PSO 1 5 5 1.012981 0.629383 5100 5100 

EPSO 0 1 1 1 1 Inf 5100 
LS-FER-PSO 1 5 5 1.208592 0.834246 10200 10200 

Func-7 

CFA 0 1.74 1 1.713465 0.528333 Inf 6100 
FER-PSO 0.96 4.96 1 1.368622 0.743413 5312.5 5100 

EPSO 0 1 1 1.058738 1 Inf 5100 
LS-FER-PSO 1 5 1 1.092660 0.922857 10200 10200 

 

  
A: iteration 1 

 
B: iteration 10 
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C: iteration 20 

 
D: iteration 30 

Fig. 2.   the position of particles in different iterations (beginning to end) 

 

 
Fig. 3. The average value of cost function in each iteration 

 
Fig. 4. The standard deviation of  cost fucntions of fireflies in each 

iteration 
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